
Rounding Error Analysis of an Orbital Collision
Probability Evaluation Algorithm

Denis Arzelier
LAAS-CNRS

Toulouse, France
arzelier@laas.fr

Florent Bréhard
Univ. Lille, CNRS, CRIStAL

F-59000 Lille, France
florent.brehard@univ-lille.fr

Mioara Joldes
LAAS-CNRS

Toulouse, France
joldes@laas.fr

Marc Mezzarobba
LIX, CNRS

Palaiseau, France
marc@mezzarobba.net

Abstract—We present an error analysis of an algorithm due
to Serra et al. (Journal of Guidance Control and Dynamics,
2016) for computing the orbital collision probability in the short
term encounter model. The algorithm reduces the numerical
computation of the collision probability to that of the sum of
a series whose coefficients are produced by a linear recurrence
relation, and is specifically designed to avoid cancellation issues
in the evaluation of the sum. While its numerical stability was
observed experimentally and a truncation error bound was
derived, the evaluation error was not studied. Here we give a
rigorous bound on the accumulated rounding error when Serra
et al.’s algorithm is implemented in floating-point arithmetic. For
a unit roundoff u and a truncation order N , the bound is of the
form (N + A)u + o(u), where o(u) stands for small compared
to u, explicitly bounded terms. The constant A explicitly depends
on the problem parameters and dominates N in practice. Our
analysis is based on the observation that the generating series
of the errors affecting each individual term is solution to a
perturbed form of a differential equation satisfied by the Laplace
transform of a function related to the collision probability.

Index Terms—Floating-point arithmetic, evaluation error, ma-
jorizing series, D-finite function, orbital collision probability

I. INTRODUCTION

Due to the drastic increase in the space debris number
during the last decades, collision avoidance has become a
usual and necessary procedure for many active satellites.
The uncertainty affecting the measured data characterizing an
encounter is a strong incentive to rely on a probability of col-
lision as the decision variable to trigger a possible avoidance
maneuver. When modeling conjunctions, two main paradigms
— the short-term and the long-term encounters — are widely
accepted and implemented in the field of orbital collision
risk assessment [1]. The first one is most frequently used in
practice and assumes that the relative velocity between the two
objects is sufficiently high, so that the encounter time is short.
In this framework, the orbital collision probability is modeled
as a 2-D integral on a disk, which can be efficiently evaluated
using an approximation by a power series. The corresponding
algorithm of Serra et al. [2] was implemented in floating-
point (FP) arithmetic and has been used in practice by the
French Space Agency (CNES) for ground space surveillance

This research was partly supported by ANR grants ANR-19-CE40-0018,
ANR-20-CE48-0014-02, and ANR-22-CE48-0016. The authors acknowledge
support of the Institut Henri Poincaré (UAR 839 CNRS-Sorbonne Université),
and LabEx CARMIN (ANR-10-LABX-59-01).

operations. More recently, an on-board implementation was
successfully tested on an experimental satellite [3].

While the parameters of this algorithm are only estimations
of physical quantities, it is however important to provide
guaranties about the accuracy and reliability of its numerical
implementation. This can be seen by analogy to the need for
accurate implementations of special functions (like erf, Airy,
Bessel, etc.) used in calculations of other physical phenomena.
One would like to estimate and bound independently the
numerical evaluation and truncation error for such a mathe-
matical function, compared to other model errors.

With this in mind, the mathematics for this problem were
well-studied (truncation error bounds, positivity of the coef-
ficients), but the round-off error analysis was so far ignored.
This was probably due to the difficulty of the task, since it
involves a for loop, which implements the evaluation of a
linearly recursive sequence.

It is known that the naive rounding error analysis of such
recurrences can result in an overestimation of the bounds [4]
because rounding errors generated in the evaluation of the loop
typically cancel out to a large extent, instead of purely adding
up. Taking into account this phenomenon usually involves a
careful study of the propagation of local errors in following
steps of the algorithm, implying complicated manipulations
of nested sums and yielding opaque expressions. To alleviate
this issue, the main idea of the recent work [4] is to encode as
generating series both the sequence of local errors committed
at each step and that of global errors resulting from the
accumulation of local errors. While far from classical in the
context of rounding-error analysis, this technique proves to be
very adequate for studying algorithms which originate from
numerical methods implementing truncated series approxima-
tions, with coefficients satisfying linear recurrences.

Different alternative methods are now briefly recalled.
Firstly, unrolling a linear recurrence can be seen as a special
case of solving a triangular (banded Toeplitz) system of linear
equations. Therefore, a first result based on [5, Chap. 8],
bounds the maximum relative error for evaluating n terms
of an order m recurrence by the product of mu

1−mu with
the condition number of the associated n by n matrix. In
this sense, in [6], a more refined analysis gives a first-order
bound (meaning that the terms of order O(u2) are omitted).
However, one has to resort to more complicated formulas,

expressed in terms of quantities that may be difficult to
estimate (inverting the associated triangular matrix, computing
the so-called reverse homogeneous recurrence for instance).

A complementary class of approaches concerns the use
of static error analyzers, which automatically provide sound
(and often formally proven) error bounds on FP rounding
errors (see for instance [7]–[9] and references therein for
existing software). While these tools are aimed at generic
numerical codes, they are not very efficient for handling a
very large number of loop iterations due to the intrinsic
high depth of the expression graph. For instance, one of
the currently fastest tools, SATIRE [10], reports a minimum
execution time of 50s for unrolling 70 iterations of the Lorenz
system. By comparison, the algorithm analyzed in this article
sometimes requires hundreds (or even thousands) of iterations.
Furthermore, the parameters involved have rather large ranges
and we would like an error bound which depends explicitly
on these parameters, without additional runs of the program.

Finally, let us also mention that a basic automatic evaluation
in interval arithmetic highly overestimates the bounds as the
iterations directly reuse the previously-computed values.

All in all, we believe that the adaptation of [4] to this
particular algorithm offers a good remedy to these limitations
and that the mathematical tools employed herein may be of
interest to the rounding-analysis spectrum of methods.

The structure and contributions of this article are as follows.
Firstly, we recall in Section II a Laplace transform technique
from [2], which proves that the terms of the recursive sequence
implemented as the main loop of the algorithm are the
coefficients of a series solution to a simple first-order Linear
Differential Equation (LDE). The main contribution of this
article is to make heavy use of this equation to interpret the
individual rounding errors on each term as the coefficients of
another series with a similar analytic behavior, up to a factor
proportional to the unit roundoff. This is the key point for
deriving realistic worst-case total relative error bounds. To do
that, a preliminary step in Section III is a classical rounding
error analysis for the loop-independent parameters and the
body of the loop (local errors).

Then, we bound the global errors accumulating when exe-
cuting the main loop in Section IV. There, we make the key
observation that the generating series in the Laplace plane
associated to global errors is solution to the same previously
mentioned LDE, but with an inhomogeneous term generated
by the local errors. Working with series in the Laplace plane
allows for sufficiently simple closed-form formulas, even if
it sometimes means performing some crafty term-by-term
majorizations. This technique allows for the computation of
explicit a priori rounding error bounds as a function of the
input parameters. Given a unit roundoff u and a truncation
order N , the bound proposed in Theorem 1 is of the form
(N + A)u + o(u), where o(u) stands for explicitly bounded
small terms compared to u. The constant A explicitly depends
on the problem parameters and dominates N in practice.

Finally, practical aspects are considered: in Section V we
comment on how the analyzed implementation simulates an

increased exponent range, as to avoid overflows in practice;
then, a numerical validation of the quality of the bound is
provided on a range of examples in Section VI.

II. COMPUTING THE ORBITAL COLLISION PROBABILITY

In this section, we review the main steps of the mathematical
derivation of the algorithm to be analyzed. Our rounding error
analysis will reuse many of the same ingredients.

A. The short-term encounter model

The short-term encounter model (whose complete set of
assumptions is recalled in detail in [1] or [2]) for the com-
putation of the probability of collision between two spherical
objects mainly consists in assuming that the relative trajectory
is a straight line during the encounter and in projecting it
onto the encounter plane defined to be perpendicular to the
relative velocity vector. Let (x, y) denote the mean coordinates
of the relative position of the secondary object with respect
to the primary object in the encounter frame (see [2] for its
definition). The relative position uncertainty is described by
the bivariate Gaussian density function

ρ(x, y) =
1

2πσxσy
exp

[
−1

2

(
(x− xm)2

σ2
x

+
(y − ym)2

σ2
y

)]
,

where (xm, ym) is the mean position of the secondary object
relative to the primary object in the covariance frame and
σx, σy ∈ R+

∗ are the standard deviations of the relative co-
ordinates in the encounter plane. The probability of collision
is then given by a two-dimensional integral parameterized by
the radius R of the combined spherical object:

P(R) =
∫
x2+y2⩽R

ρ(x, y)dxdy. (1)

This integral is the cumulative density function of the random
variable Ξ = X2 + Y 2 (i.e., P(R) = Pr

{
Ξ ⩽ R2

}
) where

X ▷ N (xm, σ
2
x), Y ▷ N (ym, σ

2
y) are independent normal

random variables. By rescaling Ξ, we get P(R) = g(1) where
the function g : R+ → R+ is defined as g(ξ) = P(R

√
ξ).

Several methods for computing the integral (1) have been
proposed in the aerospace literature (see for instance [2], [11]
and references therein). Here we focus on the algorithm of [2],
where one obtains a convergent series expansion of g(ξ) by
considering its Laplace transform. Various versions of this idea
have been applied to both central and non-central quadratic
forms; see for instance [12, Chapter 4] and references therein.

B. Algorithm

Due to the cancellation phenomenon occurring when sum-
ming the terms of a series of different signs and similar
magnitude, the direct evaluation of the power series expansion
of g(ξ) is only practical for small values of R2. The idea
of [2] to remedy this, inspired by [13], is to introduce a
preconditioner of the form Π(ξ) = exp(pξR2) and consider
the expansion of the function f = Πg, which then has
nonnegative coefficients. Assuming without loss of generality
that 0 < σy ⩽ σx, a good choice is p = 1/(2σ2

y).

We now recall the main steps for obtaining a linear-time
algorithm which computes the first N terms of the series f .
We use the following notation:

p =
1

2σ2
y

, ϕ = 1−
σ2
y

σ2
x

, ωx =
x2m
4σ4

x

, ωy =
y2m
4σ4

y

,

and observe that 0 ⩽ ϕ < 1, ωx ⩾ 0, ωy ⩾ 0.
The first step is to compute the Laplace transform of the

preconditioned function in closed form. For |λ| > p, one has

Lf (λ) = Lg(λ− pR2) =
πR2ρ(0, 0) exp

[
ωyR

2

λ + ωxR
2

λ−pϕR2

]
√
λ(λ− pϕR2)(λ− pR2)

.

The power series expansion of f(ξ) is the termwise inverse
Laplace transform of the expansion at infinity of Lf (λ)
(see [14, Chap. 9]), and the coefficients of the latter are the
same as those of the Taylor expansion of

Lf (λ
−1)=

πR2ρ(0, 0)λ2 exp
[
ωyR

2λ− ωx

pϕ −
ωx

pϕ(pϕR2λ−1)

]
√
1− pϕR2λ(1− pR2λ)

.

Since the first two coefficients of Lf (λ
−1) are zero, let f̂(λ) =

λ−2Lf (λ
−1). Letting f(ξ) =

∑∞
n=0 cnξ

n+1 (note the n+1),
the series expansion of f̂ reads

f̂(λ) =

∞∑
n=0

cn (n+ 1)!λn. (2)

The second step is to derive a linear recurrence relation
satisfied by the coefficients cn. For this, one uses the fact that
f̂(λ) is solution to an LDE. Indeed, starting from the definition
of f̂ and taking logarithmic derivatives, one has

f̂ ′(λ) = φ(λ)f̂(λ), f̂(0) = πR2ρ(0, 0), (3)

φ(λ) = ωyR
2+

pϕR2

2(1−pϕR2λ)
+

pR2

1−pR2λ
+

ωxR
2

(1−pϕR2λ)2

=
P (λ)

Q(λ)
with Q(λ) = (1−pϕR2λ)2(1−pR2λ).

(4)
The coefficients of the polynomials P and Q alternate in sign:
we write P (λ) = P0 − P1λ + P2λ

2 − P3λ
3 and Q(λ) =

1−Q1λ+Q2λ
2 −Q3λ

3 where Pi, Qi ⩾ 0.

Lemma 1. The sequence (cn) satisfies the linear recurrence

ncn −
Q1(n− 1) + P0

n+ 1
cn−1 +

Q2(n− 2) + P1

(n+ 1)n
cn−2

−Q3(n− 3) + P2

(n+ 1)n(n− 1)
cn−3 +

P3

(n+ 1)n(n− 1)(n− 2)
cn−4 = 0,

(5)
for n ⩾ 4, with initial terms c0, . . . , c3 given in Algorithm 1.

Proof sketch. The LDE (3) is equivalent to

Q(λ)λf̂ ′(λ)− P (λ)λf̂(λ) = 0. (6)

One can check that, for any series f̂ satisfying (2), one has

λkf̂(λ) =

+∞∑
n=k

cn−k

(n+ 1) . . . (n− k + 2)
(n+ 1)!λn,

λ(f̂)′(λ) =

+∞∑
n=0

(ncn)(n+ 1)!λn.

(7)

Using these identities repeatedly, one obtains

Q(λ)λf̂ ′(λ)− P (λ)λf̂(λ) =
∞∑

n=0

Fn(c)(n+ 1)!λn,

where Fn(c) is exactly the left-hand side of (5), with the
additional convention that c−1 = c−2 = c−3 = 0 and terms
whose denominator vanishes are ignored. It follows using (6)
that Fn(c) = 0 for all n ⩾ 0. For n ⩾ 4, this gives the desired
recurrence. For n = 1, 2, 3, one obtains the expressions for c1,
c2, c3 appearing in the algorithm, and similarly for c0 since
c0 = f̂(0) = πR2ρ(0, 0).

Thus, we have P(R) = g(1) = exp
(
−pR2

)∑∞
n=0 cn,

where the coefficients cn are given by Lemma 1. Algorithm 1
is a procedure for evaluating this expression. Our next goal is
to analyse the effect of rounding errors on this procedure.

Algorithm 1 Computation of the Probability of Collision.

Input: FP Parameters: σx, σy , xm, ym; FP combined object
radius: R; number of terms: N .

Output: P0:N – truncated series approximation of P .
1: p = 1

2σ2
y

; ϕ = 1−
(σy

σx

)2
; ωx =

x2
m

4σ4
x

; ωy =
y2
m

4σ4
y

;
2: Q1 = pR2(2ϕ+ 1); Q2 = p2R4ϕ(ϕ+ 2); Q3 = p3R6ϕ2;
3: P0 =

(
p
(
ϕ
2 + 1

)
+ ωx + ωy

)
R2;

4: P1 =
(pϕ(ϕ+5)

2 + ωx + ωy(2ϕ+ 1)
)
pR4;

5: P2 =
(
3
2p+ ωy(ϕ+ 2)

)
p2R6ϕ;

6: P3 = p3ωyR
8ϕ2;

7: c0 = 1
2σxσy

exp
(
− 1

2

(x2
m

σ2
x
+

y2
m

σ2
y

))
R2;

8: c1 = P0

2 c0; c2 = Q1+P0

6 c1 − P1

12 c0;

9: c3 = 2Q1+P0

12 c2 − Q2+P1

36 c1 +
P2

72 c0;
10: s = c0 + c1 + c2 + c3
11: for n = 4 to N − 1 do
12: cn = Q1(n−1)+P0

(n+1)n cn−1 − Q2(n−2)+P1

(n+1)n2 cn−2

+ Q3(n−3)+P2

(n+1)n2(n−1)cn−3 − P3

(n+1)n2(n−1)(n−2)cn−4;
13: s = s+ cn;
14: end for
15: return P0:N = exp

(
−pR2

)
s.

III. LOCAL ROUNDING ERROR BOUNDS

In this section, we describe the employed FP setting and
provide the local error analysis.

A. FP arithmetic setting

We assume that Algorithm 1 is implemented in radix-2,
precision-t, round-to-nearest FP arithmetic, with unbounded
exponent range. This means that, whenever an expression
a ∗ b, with a basic operation ∗ ∈ {+,−, ·, /}, appears in the
algorithm, what is effectively computed is RN(a ∗ b), where
RN(x) denotes the FP number closest to a real number x (with
some arbitrary tie-breaking rule). In particular, our arithmetic
obeys the standard error models [5, Chap. 2.2.]

RN(x) = x(1 + r1) = x/(1 + r2), |r1|, |r2| ⩽ u, (8)

Param. p ωx ωy ϕ Q1 Q2 Q3

Abs. Err. γ2p γ5ωx γ5ωy γ4 γ9Q
♯
1 γ18Q

♯
2 γ24Q

♯
3

Param. P0 P1 P2 P3 c0 e−pR2

Abs. Err. γ10P
♯
0 γ18P

♯
1 γ27P

♯
2 γ32P

♯
3 e0c0 τe−pR2

TABLE I: Absolute rounding error bounds for the parameters.

with rounding unit u = 2−t. In addition, multiplications by
powers of two are exact.

This setting correctly models “real-life” IEEE-754 arith-
metic provided that no overflows or underflows occur. When
implemented in binary64, Algorithm 1 can easily encounter
overflows for realistic values of the input. We comment in
Section V on how the implementation of [2] simulates an
increased exponent range, making the assumption of an un-
bounded exponent range legitimate for the error analysis. For
definiteness, we make some assumptions, which are not critical
(our bounds adapt to slightly different implementations):
– composite expressions are evaluated from left to right: for
instance, a+ bcd is computed as RN(a+ RN(RN(bc)d)),
– the power operation is implemented as x2 = x·x, x3 = x·x2,
x4 = (x2)2, x6 = (x2)3, and x8 = (x4)2,
– the exponential function used at steps 7 and 15 is faithfully
rounded, implying a relative error bounded by 2u.

We denote by x̃ the computed value of a quantity x. To
express the relation between x̃ and x, we use the θk and
γk notation of [5, Chap. 3]. In short, each occurrence of the
symbol θk denotes a potentially different quantity of the form
θk =

∏k
i=1(1 + ri)

±1 − 1 with |ri| ⩽ u for all i. Assuming
ku < 1, one has |θk| ⩽ γk where γk is defined as ku/(1−ku)
and satisfies in particular γk = ku+O(u2) as u→ 0.

B. Bounds for loop-independent parameters

Let us first bound the rounding errors occurring in lines 1–7
of Algorithm 1. For instance, using Equation (8), one has

p̃ = RN(1/RN(σy · σy))/2 = p(1 + θ2), (9)

which gives an absolute error bound of |p− p̃| ⩽ γ2p. Similar
bounds for the other parameters are summarized below.

Proposition 1. The absolute FP rounding error for the
parameters appearing in lines 1–7 and the preconditioner
exp(−pR2) in line 15 in Algorithm 1 is bounded as indicated
in Table I, where P ♯

i := Pi{ϕ ← 1}, Q♯
i := Qi{ϕ ← 1}

denote the values for ϕ = 1 of the Pi and Qi:

Q♯
1 = 3pR2, Q♯

2 = 3p2R4, Q♯
3 = p3R6,

P ♯
0 =

(
3
2p+ ωx + ωy

)
R2, P ♯

1 = (3p+ ωx + 3ωy) pR
4,

P ♯
2 =

(
3
2p+ 3ωy

)
p2R6, P ♯

3 = p3ωyR
8,

e0 = exp

[
1

2

(
x2m
σ2
x

+
y2m
σ2
y

)
γ4

]
(1 + γ6)− 1,

τ = exp
[
pR2γ2

]
(1 + γ2)− 1.

(10)

Proof. Similarly to Equation (9) one obtains ω̃x = ωx(1+θ5)
and ω̃y = ωy(1 + θ5).

Concerning ϕ, firstly observe that since 0 < σy ⩽ σx, one
has 0 < σy/σx ⩽ 1 and because RN preserves inequalities,
0 < ã := RN(RN(σy/σx) · RN(σy/σx)) ⩽ 1, implying that
0 ⩽ b := 1− ã < 1. Now, ϕ̃ = RN(b), so that 0 ⩽ ϕ̃ ⩽ 1 and

|ϕ− ϕ̃| ⩽ |ϕ− b|+ |b− ϕ̃| ⩽ |σ2
y/σ

2
x− ã|+u ⩽ γ3+γ1 ⩽ γ4.

Regarding Q1, one has Q̃1 = pR2(2ϕ̃ + 1)(1 + θ6), and
hence, using the previous bounds on ϕ and |ϕ− ϕ̃|,
|Q1 − Q̃1| = |pR2(2ϕ+ 1)− pR2(2ϕ̃+ 1)(1 + θ6)|

⩽ 2pR2|ϕ− ϕ̃|+ pR2|(2ϕ̃+ 1)|γ6
⩽ 2pR2γ4 + 3pR2γ6 ⩽ 3pR2γ9.

The last inequality is readily obtained by applying the rules
given by [5, Lemma 3.3]. The case of the other parameters
Pi and Qi is similar; see Appendix A of the author version [15]
for detailed proofs.

For c0, denote z = − 1
2

(
x2
m

σ2
x
+

y2
m

σ2
y

)
. Then z̃ = z(1 + θ4),

and c̃0 = R2

2σxσy

(
ez̃(1 + θ2)

)
(1 + θ4) = c0e

zθ4(1 + θ6).

C. Local error analysis
Let us now turn to the computation of cn (steps 7–12 of

Algorithm 1). We denote by c̃n the computed value of cn,
and we call local absolute error on cn the absolute rounding
error εn generated at the corresponding step of the algorithm.
In other words, for n ⩾ 4, we set

εn := c̃n −
(
Q1(n− 1) + P0

(n+ 1)n
c̃n−1 −

Q2(n− 2) + P1

(n+ 1)n2
c̃n−2

+
Q3(n− 3) + P2

(n+ 1)n2(n− 1)
c̃n−3 −

P3

(n+ 1)n2(n− 1)(n− 2)
c̃n−4

)
(11)

(where all operations are mathematically exact). We then have
the following bound on |εn|.

Proposition 2. The local error introduced at iteration n at
step 12 of Algorithm 1 satisfies

|εn| ⩽ γ

(
Q♯

1(n− 1) + P ♯
0

(n+ 1)n
|c̃n−1|+

Q♯
2(n− 2) + P ♯

1

(n+ 1)n2
|c̃n−2|

+
Q♯

3(n− 3) + P ♯
2

(n+ 1)n2(n− 1)
|c̃n−3|

+
P ♯
3

(n+ 1)n2(n− 1)(n− 2)
|c̃n−4|

)
,

where γ = γ40.

Proof. The coefficient cn is computed as c̃n = (((t1+ t2)(1+
θ1) + t3)(1 + θ1) + t4)(1 + θ1) with

ti=(−1)i+1 (Q̃i(n− i)(1 + θ1) + P̃i−1)(1 + θ1)

di(n)(1 + θi)−1
c̃n−i(1+θ2),

where d1(n) = (n + 1)n, d2(n) = (n + 1)n2, . . . are the
denominators appearing in (11), and Q4 = Q̃4 = 0. Hence,

c̃n =

4∑
i=1

(Q̃i(n− i)(1 + θ9) + P̃i−1(1 + θ8)

di(n)
.

Substituting into (11), we obtain

εn =

4∑
i=1

(−1)i+1c̃n−i

di(n)

(
(Q̃i −Qi + Q̃iθ9)(n− i)
+ (P̃i−1 − Pi−1 + P̃i−1θ8)

)
.

According to Table I, we have |Q̃i − Qi| ⩽ Q♯
iγ24 (with the

convention that Q♯
4 = 0) and |Q̃iθ9| ⩽ (1+ γ24)Q

♯
iγ9, so that

|Q̃i−Qi+Q̃iθ9| ⩽ Q♯
iγ33. Similarly, we have |P̃i−1−Pi−1+

P̃i−1θ8| ⩽ P ♯
i−1γ40, and the result follows.

Since the formulas used for computing c1, c2, c3 correspond
to truncated instances of the recurrence, (11) also applies for
ε1, ε2, ε3, if terms with a zero denominator are ignored. With
this convention the bound from Prop. 2 holds for all n ⩾ 1.

IV. GLOBAL ROUNDING ERROR BOUNDS

Let us apply the generating series approach of [4] to the
rounding error analysis of the main loop.

A. Global error modeling

The local errors εn build up and lead to a global (absolute)
error δn := cn − c̃n, which is the main quantity we need to
control. For doing so it is convenient to encode the sequences
(δn) and (εn) as coefficients of the generating series δ̂(λ) =∑+∞

n=0(n+1)!δnλ
n and ε̂(λ) =

∑+∞
n=0(n+1)!εnλ

n as in (2).
From Equations (5) and (11), we have

nδn =
Q1(n− 1) + P0

(n+ 1)
δn−1 −

Q2(n− 2) + P1

(n+ 1)n
δn−2

+
Q3(n− 3) + P2

(n+ 1)n(n− 1)
δn−3 −

P3

(n+ 1)n(n− 1)(n− 2)
δn−4 − nεn.

After multiplying this relation by λn and summing over n, we
obtain, using identities (7), an LDE satisfied by the series δ̂:

Q(λ)(δ̂)′(λ)− P (λ)δ̂(λ) = ε̂′(λ). (12)

Comparing with Equation (6), we see that δ̂ satisfies the
same first-order LDE as the generating series f̂ of the (exact)
coefficients cn, except for the right hand side which now
depends on the local errors εn. Only bounds are available for
these, so we need to work with differential inequalities.

Given two series a(λ) =
+∞∑
n=0

anλ
n and b(λ) =

+∞∑
n=0

bnλ
n,

denote by a(λ)≪ b(λ) the fact that |an| ⩽ bn for all n ⩾ 0. In
particular, this implies that the bn coefficients are nonnegative
real numbers. We denote by |a|(λ) =

∑+∞
n=0 |an|λn the series

of absolute values of coefficients.

Proposition 3 (Corollary of Proposition 2). The generating
series of local errors satisfies the differential inequality

ε̂′(λ)≪ γ
((
Q♯(λ)φ(λ) + P ♯(λ)

)
f̂(λ)

+Q♯(λ)|δ̂|′(λ) + P ♯(λ)|δ̂|(λ)
)
,

(13)

with Q♯(λ) = Q♯
1λ+Q♯

2λ
2 +Q♯

3λ
3 and P ♯(λ) = P ♯

0+P
♯
1λ+

P ♯
2λ

2 + P ♯
3λ

3 + P ♯
4λ

4.

Proof. This follows by using the inequality |c̃n| ⩽ cn + |δn|
in the bound on εn obtained from Proposition 2, which is to
be multiplied by nλn, and summed over n.

Located in the Laplace plane, Eqs. (12) and (13) allow for
deriving bounds on δ̂(λ). They are obtained as solutions of
an order-1 LDE. But there is still a need to bound the inverse

Laplace transform δ(ξ) =
∞∑

n=0
δnξ

n+1. In particular, we need

to bound the total sum of absolute rounding errors |δ|(1). This
is done by an ad-hoc majorization of convolution terms.

B. A simplified bound
For the sake of exposition, we first prove a simplified, not

fully rigorous error bound obtained by neglecting the terms
involving γδ̂(λ) in (13), which are of order O(u2):

Q(λ)δ̂′(λ)− P (λ)δ̂(λ)≪ γ
(
Q♯(λ)φ(λ) + P ♯(λ)

)
f̂(λ).

To further simplify this equation, we denote φ♯(λ) :=
φ(λ){ϕ ← 1} and use 0 ≪ φ(λ) ≪ φ♯(λ) and 0 ≪
Q(λ)−1 ≪ Q(λ)−1{ϕ ← 1} = (1 − pR2λ)−3 (this follows
directly from Equation (4)) to obtain

|δ̂|′(λ)≪ φ(λ)|δ̂|(λ) + γψ̂(λ)f̂(λ),

with ψ̂(λ) :=
Q♯(λ)φ♯(λ) + P ♯(λ)

(1− pR2λ)3
≫ 0.

(14)

Solving this inequality leads to the following simplified bound.

Proposition 4. Under the simplified model above, the total
rounding error accumulated while computing f(1) satisfies

+∞∑
n=0

|c̃n − cn| = |δ|(1) ⩽ (e0 + γC)f(1),

with e0 given in (10), γ = γ40 and

C :=
7

96
p3ωxR

8 +

(
7

12
p+

1

2
ωx

)
p2R6 +

(
9

4
p

+
5

4
ωx +

15

4
ωy

)
pR4 +

(
3

2
p+ ωx + 3ωy

)
R2.

(15)

Proof. Since all the series on the right-hand side of (14)
have nonnegative coefficients, Lemma 6.5 in [4] implies that
|δ̂|(λ) ≪ ∆̂(λ) where ∆̂(λ) is the solution with ∆̂(0) =
e0f̂(0) ⩾ |δ(0)| of the LDE

∆̂′(λ) = φ(λ)∆̂(λ) + γψ̂(λ)f̂(λ). (16)
Using f̂ as a solution of the homogeneous part of (16),

∆̂(λ) =
(
e0 + γΨ̂(λ)

)
f̂(λ), Ψ̂(λ) :=

∫ λ

0

ψ̂(σ)dσ.

This is a bound on |δ̂|, in the Laplace plane. To go back
to |δ| and obtain an inequality |δ|(λ) ≪ ∆(λ), consider
the series ∆ and Ψ defined by ∆̂(λ) = λ−2L∆(λ

−1) and
Ψ̂(λ) = LΨ(λ

−1) (with no λ−2 factor in the latter). Standard
Laplace transform theory, see [14, Chap. 5, §8], gives

∆(ξ) = e0f(ξ) + γ (Ψ ∗ f)(ξ),
with(Ψ∗f)(ξ)=

∫ ξ

0
Ψ(τ)f(ξ−τ)dτ the convolution of Ψ and f .

A technical but straightforward computation1 (see [15,
Lemma 3 of App. B]) shows Ψ(ξ) ≪ W (ξ)epR

2ξ, where
W (ξ) is an explicit polynomial of degree 3 in ξ with nonneg-
ative coefficients and

∫ 1

0
W (τ)dτ is equal to the constant C

defined in (15). It follows that

(Ψ ∗ f)(1) ⩽
∫ 1

0

W (τ)epR
2τepR

2(1−τ)g(1− τ)dτ

⩽ epR
2

g(1)

∫ 1

0

W (τ)dτ = Cf(1),

1Maple™ worksheet available at https://homepages.laas.fr/mmjoldes/
CollisionProba/ and reproduced in Appendix C of [15].

where the second inequality uses that g is nondecreasing. So

|δ|(1) ⩽ ∆(1) = e0f(1)+γ (Ψ∗f)(1) ⩽ (e0+γC)f(1).

C. A rigorous bound

For a fully rigorous bound on δ̂(λ), a similar reasoning
on (12) and (13) implies:

|δ̂|′(λ)≪ γ
Q♯(λ)

Q(λ)
|δ̂|′(λ) +

(
φ(λ) + γ

P ♯(λ)

Q(λ)

)
|δ̂|(λ)

+ γ
Q♯(λ)φ(λ) + P ♯(λ)

Q(λ)
f̂(λ),

where the coefficients of |δ| and |δ|′ as well as the inhomo-
geneous term are series with nonnegative coefficients. Since
Q♯(0) = 0, Lemma 6.5 in [4] applies again and shows that
δ̂(λ)≪ ∆̂(λ), with ∆̂(λ)≫ 0 satisfying the LDE

∆̂′(λ) = φ(λ)∆̂(λ) +
γ

Q(λ)

(
Q♯(λ)

(
f̂ ′(λ) + ∆̂′(λ)

)
+ P ♯(λ)

(
f̂(λ) + ∆̂(λ)

))
.

Let us write ∆̂(λ) = ê(λ)f̂(λ) and use (3) to obtain an LDE
satisfied by ê, where the right-hand side is a positive series:(
1− γQ

♯(λ)

Q(λ)

)
ê′(λ) = γ

(
Q♯(λ)

Q(λ)
φ(λ) +

P ♯(λ)

Q(λ)

)
(1+ê(λ)).

Since a(λ) := γQ♯(λ)/Q(λ) satisfies a(0) = 0 and a(λ)≫ 0,

1

1− a(λ)
=

Q(λ)

Q(λ)− γQ♯(λ)
≫ 0,

by composition of two series with nonnegative coefficients.
After multiplication by this series, we obtain

ê′(λ) = γ
Q♯(λ)φ(λ) + P ♯(λ)

Q(λ)− γQ♯(λ)
(1 + ê(λ)). (17)

This LDE has several poles due to the perturbation γQ♯(λ)
of the denominator in the right-hand side. To overcome this
additional difficulty, we use the following lemma, proved in
[15, Appendix B], to obtain a unique pole, at the price of
a slight increase in the parameter p. This is a key point for
adapting the proof of Proposition 4 to the current setting.

Lemma 2. Assuming 7γ < 1, we have

1

Q(λ)− γQ♯(λ)
≪ 1

(1− p+R2λ)3
with p+ :=

p

1− 3
√
7γ
.

This result allows us to bound the solution of LDE (17) by
the solution of the simpler LDE

ê′(λ) = γψ̂+(λ)(1 + ê(λ)), ê(0) = e0, (18)

where ψ̂+(λ) := ψ̂(λ){p← p+} with ψ̂(λ) defined in (14).

Proposition 5. The terms c̃n computed in FP arithmetic in
the main loop of Algorithm 1 satisfy:
+∞∑
n=0

|c̃n−cn| = |δ|(1) ⩽
(
e0 + (1+e0)e

ηpR2

(eγC
+

− 1)
)
f(1),

with γ=γ40, e0 as in (10), η :=
3
√
7γ

1− 3
√
7γ

and C+:=C{p←p+}.

Proof. Denoting Ψ̂+(λ) :=

∫ λ

0

ψ̂+(σ)dσ, LDE (18) gives

ê(λ) = (1 + e0)e
γΨ̂+(λ) − 1 = e0 + (1 + e0)

+∞∑
k=1

γkΨ̂+(λ)k

k!
.

This gives an explicit expression for ∆̂(λ) = ê(λ)f̂(λ).
To obtain ∆(ξ) s.t. ∆̂(λ) = λ−2L∆(λ

−1), let Ψ+(ξ) be the
series such that Ψ̂+(λ) = LΨ+(λ−1). Then Laplace transform
rules give the following identity of formal power series:

∆(ξ) = e0f(ξ) + (1 + e0)

+∞∑
k=1

γk

k!

(
Ψ+∗k ∗ f

)
(ξ), (19)

where Ψ+∗k
= Ψ+ ∗ · · · ∗Ψ+ (k times). In [15, Lemma 4 of

App. B], we prove the remaining inequality:
(Ψ+∗k ∗ f)(1) ⩽ eηpR

2

(C+)kf(1).

D. The final rounding error bound

The truncated series approximation P0:N = e−pR2

s =
e−pR2 ∑N−1

n=0 cn of P is obtained by evaluating the sum∑N−1
n=0 c̃n in FP arithmetic and by multiplying the result s̃ with

e−pR2

. We call P̃0:N the FP number returned by Algorithm 1.
The following theorem provides a relative rounding error

bound w.r.t. P . Adding to this bound a relative truncation error
bound on |P0:N −P|/P derived from [2, §III.C] would yield
a total error bound on |P̃0:N − P|/P .

Theorem 1. The total rounding error is bounded by∣∣P̃0:N − P0:N

∣∣
P ⩽ (1+γN)(1+τ)(1+e0)

(
1 + eηpR

2

(eγC
+

− 1)
)
−1,

with γ = γ40, and where the quantities e0, τ are defined in
Proposition 1, and η, C+ are defined in Proposition 5.

The first-order error approximation in the roundoff unit u
for this bound on |P̃0:N − P0:N |/P is(

N + 8 + 2pR2 +
2x2m
σ2
x

+
2y2m
σ2
y

+ 40C

)
u, (20)

where 40Cu is the dominant term for large p, R, xm and ym,
and C defined in (15).

Proof. Denote s =
N−1∑
n=0

c̃n and s̃ its FP evaluation using N −

1 additions. By Proposition 5, |s − s| ⩽
N−1∑
n=0
|c̃n − cn| ⩽

νf(1) where ν := e0 + (1 + e0)e
ηpR2

(eγC
+

− 1). Then |s̃−

s| ⩽ γN−1

N−1∑
n=0
|c̃n| ⩽ γN−1(1 + ν)f(1). Combining these

two bounds yields |s̃− s| ⩽ (γN−1 + ν + γN−1ν)f(1).
Finally, the relative errors |τ ′| ⩽ τ and |θ1| ⩽ u induced by

the evaluation of exp(−pR2) and the multiplication by s̃ give

|P̃0:N − P0:N | = |e−pR2

s̃(1 + τ ′)(1 + θ1)− e−pR2

s|

⩽ e−pR2
(
s(τ + u+ τu) + |s̃− s|(1 + τ)(1 + u)

)
⩽ P

(
τ + u+ τu+ (γN−1 + ν + γN−1ν)(1 + τ)(1 + u)

)
⩽ P

(
(1 + γN)(1 + τ)(1 + ν)− 1

)
,

which is exactly the bound claimed by Theorem 1.

V. PREVENTING OVERFLOWS AND UNDERFLOWS

Algorithm 1 may be subject to overflows and underflows,
depending on the problem parameters and the number N of
terms. First, from [2, §III.C, Prop. 4], to obtain a reasonable
approximation of P , we need N ⩾ 2e(p+ωx+ωy)R

2. Since
the cn sum to f(1) = epR

2P and P may be close to 1,
the use of binary64 FP arithmetic with maximum exponent
1023 may cause overflows for examples requiring more than
2e ln

(
21023

)
≈ 4000 terms.

To prevent this, in the C code of [2], a rescaling strategy is
implemented. At the end of each iteration, if the absolute value
of the computed term c̃n is above A or below A−1, for A =
2800, then the values of c̃n, c̃n−1, c̃n−2, c̃n−3 are rescaled by 2k

for some k so that their absolute values belong to [A−1, A].
This number k is added to a signed 64-bit integer used to
“store” the current exponent, and the summation of the terms
c̃n keeps track of these intermediate rescalings. Two additional
rescalings are also used for c0 and the final factor e−pR2

to
prevent underflows. Note that this rescaling strategy, where
the exponent is stored separately in a 64-bit integer, does not
modify the previously used relative rounding error model.

The following theorem guarantees the absence of overflows
under reasonable assumptions on the size of input parameters.

Theorem 2. We assume that the number N of terms required
to approximate P is bounded by N∗ = 108, and that this
bound also holds for pR2, ωxR

2 and ωyR
2. In addition,

considering the size of a satellite and its distance to the space
debris, we assume 1 ⩽ R ⩽ 103 and σx, σy, |xm|, |ym| ⩽ 106

(all these quantities are expressed in meters).
Then the execution of the C implementation of Algorithm 1

on σx, σy, xm, ym, R,N is not subject to overflows.

Proof. We prove this property for all the steps of the algo-
rithm, postponing to the end of the proof the additional effect
of rounding errors.
• Loop-independent parameters. By combining the inequalities
assumed for the parameters in the theorem, it is straightforward
that all the subexpressions involved in the computation of p,
ϕ, ωx, ωy , Qi, Pi and c0 are much smaller than 21023 and do
therefore not cause any overflow.
• Evaluation of cn for n ⩾ 1. At the beginning of iteration n,
the preceding terms cn−1, cn−2, cn−3, cn−4 are bounded by
A = 2800 in absolute value thanks to the rescaling strategy. A
quick analysis shows that each of the four coefficients in front
of cn−i is bounded by 2N4

∗ , and both their numerator and de-
nominator are bounded by 2N5

∗ . Hence, their evaluation cannot
produce overflows. Finally, cn ⩽

(∑3
i=1Qi +

∑3
i=0 Pi

)
A ⩽

7N4
∗A ⩽ 2910 < 21023, so that no overflow can occur.

• No overflow of the 64-bit exponent. The total sum is bounded
by f(1) = epR

2P ⩽ eN∗ ⩽ 22
20.5

< 22
63−1, so that the

exponents of all cn and all partial sums fit in the 64-bit integer.
The final multiplication by e−pR2

cannot cause an overflow
either since the argument is negative.
• The effect of rounding errors. The local rounding er-
rors in the constants and in each iteration of the loop

were bounded by small constants (Propositions 1 and 2),
hence they do not modify significantly the overflow anal-
ysis of the first two items above. The worst-case relative
error bound given by Theorem 1 is (crudely) bounded by
exp

(
γN+8 + (2 · 1012 + γ2 + η)N∗ + γC+

)
⩽ 22

61.4

. Al-
though huge, this bound is sufficient to prove that the com-
puted sum of the c̃n is smaller than 22

61.4 ·2220.5 < 22
63−1.

The rigorous underflow analysis is slightly more involved
and postponed to future work. Roughly speaking, the rescaling
strategy prevents underflows in the exponentials in c0 and
epR

2

(which would cause the output to be zero). Underflows
can however occur when unrolling the recurrence, but then it
means that the neglected terms cn are so small compared to
the previous ones that this underflow error is smaller than the
relative error already computed for the partial sum.

VI. EXAMPLES AND CONCLUSION

We exemplify the error bounds on the examples provided
in [2], together with additional numerically challenging exam-
ples constructed for illustration purposes2

The numerical behavior of the algorithm is illustrated on
Test 1, given in the first line of Table II, for which 101
terms are computed. In Figure 1a, the magnitude of the
coefficients c0, . . . , c100 is plotted on a log-scale. This is a
higher precision 106-bit FP arithmetic computation, using the
MPFR library [16], in order to accurately approximate their
exact values. Their magnitude increases up to c16 and then
the convergent regime is observed. In Figure 1b the relative
rounding error on each coefficient is plotted, when the loop
is evaluated with a 53-bit FP arithmetic (this rounding error
is estimated by comparing with the shadow 106-bit higher
precision computation). These errors are plotted in terms of
the roundoff unit u = 2−53. The corresponding evaluated sum
s̃ and probability P̃0:N are recalled in Figure 1d. For compari-
son, we also tested an interval arithmetic implementation with
a 53-bit precision interval format, using the MPFI library3.
While these intervals provide enclosures of all the accumulated
rounding errors, we observe in Figure 1c, where the radius
of the intervals is plotted in terms of u, that they highly
overestimate the actual rounding errors. This is confirmed
in 1d: with interval arithmetic, the final absolute enclosure
radius is 2.9439e12 u ≃ 3.26e-4, while the shadowed absolute
error bound is 9.6505e0 u≃ 1.0714e-15.

In Table II, we computed both the fully rigorous relative
error bound of Theorem 1 and its linearization (20) w.r.t. u.
The “exact” column corresponds to the mathematical values
obtained by a sufficiently high precision evaluation. For easy
examples requiring less than 50 terms, both MPFI (with 53
bits) and our bounds provide very sharp enclosures. Both
of our bounds are almost identical. A rapid increase of
interval widths with MPFI is observed when N is larger
than 100 in most of the cases, whereas our bounds continue
to guarantee at least one correct digit in very hard cases

2Code available at https://homepages.laas.fr/mmjoldes/CollisionProba/
3https://gitlab.inria.fr/mpfi/mpfi

(a) Coeff. magnitude
(b) Coeff. rel. err. (in terms of u)
for 53-bit precision

(c) Interval radius (in terms of u)
for MPFI 53-bit precision

Sum s̃ Abs. err. (u) Rel. err. (u)
2.0521e4 2.5920e6 1.2631e2

Proba P̃0:N Abs. err. (u) Rel. err. (u)
7.6474e-2 9.6505e0 1.2619e2

MPFI Sum mid Abs. rad. (u) Rel. rad. (u)
2.0521e4 7.8997e17 3.8496e13

MPFI Proba mid Abs. rad. (u) Rel. rad. (u)
7.6474e-2 2.9439e12 3.8496e13

(d) Computed values

Fig. 1: Loop evaluation results for Test 1.

Case Input parameters (m) N Relative Error
σx σy R xm ym Exact MPFI Lin. Bound (20) Bound Thm. 1

Test 1 50 1 5 10 0 101 1.40e-14 4.27e-3 6.72e-12 6.72e-12
Chan 1 50 25 5 10 0 49 5.86e-17 5.86e-15 6.48e-15 6.48e-15
Chan 2 50 25 5 0 10 49 1.50e-16 6.23e-15 6.53e-15 6.53e-15
Chan 3 75 25 5 10 0 49 9.01e-18 4.55e-15 6.47e-15 6.47e-15
Chan 4 75 25 5 0 10 49 1.80e-16 4.88e-15 6.53e-15 6.53e-15
Chan 5 3,000 1,000 10 1,000 0 49 2.02e-16 7.41e-15 6.35e-15 6.35e-15
Chan 6 3,000 1,000 10 0 1,000 48 1.18e-16 5.61e-15 6.44e-15 6.44e-15
Chan 7 3,000 1,000 10 10,000 0 40 3.38e-16 5.45e-15 7.80e-15 7.80e-15
Chan 8 3,000 1,000 10 0 10,000 4 1.53e-14 4.45e-16 2.36e-14 2.36e-14
Chan 9 10,000 1,000 10 10,000 0 46 9.31e-17 4.46e-15 6.22e-15 6.22e-15
Chan 10 10,000 1,000 10 0 10,000 4 1.52e-14 5.57e-14 2.36e-14 2.36e-14
Chan 11 3,000 1,000 50 5,000 0 47 9.92e-17 4.38e-15 6.73e-15 6.73e-15
Chan 12 3,000 1,000 50 0 5,000 4 4.84e-17 1.98e-15 7.10e-15 7.10e-15

Alfano 3 114.25 1.41 15 0.15 -3.88 1627 4.14e-12 1.15e54 7.07e-10 7.08e-10
Alfano 5 177.81 0.03 10 2.12 -1.22 >1e7 4.35e-4 4e69380 4.87e-01 3.60e+00

Custom 1 1 1 10 1 1 543 6.96e-16 1.78e-13 1.53e-09 1.53e-09
Custom 2 1 0.8 10 1 1 969 2.73e-14 4.7e23 5.59e-09 5.60e-09
Custom 3 1 0.5 10 1 1 3805 7.74e-14 4.4e174 8.95e-08 9.00e-08
Custom 4 1 0.2 10 1 1 95139 4.6e-12 2e1483 2.13e-05 2.22e-05
Custom 5 1 0.1 10 1 1 >1e7 3.63e-8 1e6155 1.36e-03 1.59e-03
Custom 6 0.5 0.1 10 1 1 >1e7 1.49e-11 2e5988 1.66e-02 1.95e-02
Custom 7 1 0.05 10 1 1 >1e7 3.0e-6 4e24841 8.68e-02 1.70e-01
Custom 8 0.2 0.05 10 1 1 >1e7 1.28e-9 2e23506 4.05e+01 7.40e+17

TABLE II: Relative errors for test cases adapted from [2]:
exact, obtained with MPFI, computed with our linearized
bound w.r.t. u (20) and with our full bound of Theorem 1.

requiring about N = 107 terms. However, when the ratio
σy/σx becomes very small, like in Case Alfano 5 and Custom
8, the bounds provided are very loose and the rigorous bound
deviates from its linearization. As mentioned also in [2], such
extremely degenerate cases are rarely occurring in practice
(this roughly corresponds to the integration domain becoming
uni-dimensional).

Therefore, we believe that the bound provided in this article
can be of highly practical use. One can simply evaluate the
provided closed-form bound and there is no need to overload
the C code with shadowing computations or with an additional
execution with interval arithmetic (which would encumber

especially the on-board implementation). Our study also shows
that the approach of [4] and the additional mathematical tools
developed herein are applicable to an algorithm currently used
in practice. While described by pen-and-paper, the formulas
presented can be easily obtained by a computer algebra soft-
ware, so they can be at least partly automated. Future works,
include possible refinements concerning underflow handling,
an average case analysis in the framework of [17], a formal
proof of these results, and further generalizations to other
implementations of similar mathematical functions like Chi-
square densities (which have similar algebraic properties).

REFERENCES

[1] F. Chan, Spacecraft Collision Probability. American Institute of
Aeronautics and Astronautics, 2008.

[2] R. Serra, D. Arzelier, M. Joldes, J. Lasserre, A. Rondepierre, and
B. Salvy, “Fast and accurate computation of orbital collision probability
for short-term encounters,” Journal of Guidance Control and Dynamics,
vol. 39, no. 9, pp. 1009–1021, 2016, Code link https://homepages.laas.
fr/mmjoldes/CollisionProba/.

[3] J. Thomassin, S. Laurens, and F. Toussaint, “Asteria : Autonomous col-
lision risks management,” in 72nd International Astronautical Congress
(IAC), Dubai, UAE, 25-29 Oct. 2021, no. IAC-21/A6/7Paper 63266.
International Astronautical Federation, 2021.

[4] M. Mezzarobba, “Rounding error analysis of linear recurrences us-
ing generating series,” Electronic Transactions on Numerical Analysis,
vol. 58, pp. 196–227, 2023.

[5] N. Higham, Accuracy and Stability of Numerical Algorithms. SIAM,
2002.

[6] R. Barrio, B. Melendo, and S. Serrano, “On the numerical evaluation of
linear recurrences,” Journal of Computational and Applied Mathematics,
vol. 150, no. 1, pp. 71–86, 2003.

[7] A. Appel and A. Kellison, “VCFloat2: Floating-point error analysis
in Coq,” in Proceedings of the 13th ACM SIGPLAN International
Conference on Certified Programs and Proofs. NY, USA: ACM, 2024,
p. 14–29.

[8] L. Titolo, M. A. Feliú, M. Moscato, and C. A. Muñoz, “An abstract in-
terpretation framework for the round-off error analysis of floating-point
programs,” in Verification, Model Checking, and Abstract Interpretation:
19th Intl. Conf., LA, CA, USA, Jan. 7-9. Springer, 2018, pp. 516–537.

[9] A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamarić,
and G. Gopalakrishnan, “Rigorous estimation of floating-point round-off
errors with symbolic Taylor expansions,” ACM Trans. Program. Lang.
Syst., vol. 41, no. 1, Dec 2018.

[10] A. Das, I. Briggs, G. Gopalakrishnan, S. Krishnamoorthy, and
P. Panchekha, “Scalable yet rigorous floating-point error analysis,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–14.

[11] R. García-Pelayo and J. Hernando-Ayuso, “Series for collision prob-
ability in short-encounter model,” Journal of Guidance Control and
Dynamics, vol. 39, no. 8, pp. 1908–1916, 2016.

[12] A. Mathai and S. Provost, Quadratic Forms in Random Variable: Theory
and Applications. Dekker, 1992.

[13] W. Gawronski, J. Müller, and M. Reinhard, “Reduced cancellation in
the evaluation of entire functions and applications to the error function,”
SIAM J. Numerical Analysis, vol. 45, no. 6, pp. 2564–2576, 2007.

[14] D. Widder, An Introduction to Transform Theory. Acad. Press, 1971.
[15] D. Arzelier, F. Bréhard, M. Joldes, and M. Mezzarobba, “Rounding Error

Analysis of an Orbital Collision Probability Evaluation Algorithm,”
2024, https://laas.hal.science/hal-04466875/file/arith2024_hal.pdf.

[16] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with correct
rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, pp. 13–es, 2007.

[17] N. Higham and T. Mary, “A new approach to probabilistic rounding error
analysis,” SIAM J. Sci. Comput., vol. 41, no. 5, pp. A2815–A2835, 2019.

